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Cooperative diffusion of animals on the square lattice 

Jean-Cnrisrophe Toussaint, Jean-Marc Debierre and ioi'c iufban 
Laboratoire de Physique du  Salidet, Universite de  Nancy I, BP 239,54506 Vandoeuvre-l&s- 
Nancy, France 

Received 21 May 1990, in final form 22 October 1990 

Abstract. The collective diffusion of N-panicle lattice animals without vacancies and mass 
up to N =86 is investigated on the square lattice. Using the transfer matrix technique, a 
cluster fractal dimension d, = 1.5618 *0.0012 is found. The mean-square displacement of 
the centre of mass R' and the pair correlation function g, are determined by Monte Carlo 
simulations. This dynamical study gives the mass dependence of the diffusion coefficient 
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times T*. Scaling assumptions for R2 and g, lead to the distinguishment oftwa characteristic 
times: i which is the time necessary for the cluster 10 be translated by its radius of gyration 
R,, and the time necessary for a panicle of the cluster to be moved approximately by 
R, inside the cluster. 

Y - 1" 

1. Introduction 

Cooperative diffusion of polymer chains has been intensively investigated (Verdier 
and Stockmayer 1962) using lattice models and Monte Carlo algorithms with local 
deformations of the chain (for a recent review see Caracciolo and Sokal 1986). More 
recently, Kantor ef al (1987) have examined the statics and the dynamics of tethered 
surfaces defined as two-dimensional manifolds (or 'sheet' polymers) embedded in a 
three-dimensional space. But very little has been done concerning the diffusion of 
lattice animals. Gould and Holl (1981) have studied a diffusion mechanism for an 
s-particle cluster, on a lattice whose sites are occupied (empty) with a probability p 
(q = 1 - p ) .  The diffusion mechanism consists in interchanging an arbitrary cluster 
particle and a near or distant empty surface site, with probability q", where Af is the 
variation in the number of perimeter sites (Stauffer 1978). They have computed the 
diffusion coefficient of an isolated cluster in the three following limiting cases: p+O, 
lattice animals; p = p c .  percolation clusters; and p +  1, compact clusters. A different 
approach where particle jumps are restricted to neighbouring positions was developed 
by van der Eerden et a/ (1977) to describe the diffusion of very small (less than 20 
atoms) gold or silver clusters on plane alkali halide substrates. The pair interactions 
between two cluster atoms and between one atom and the substrate are taken into 
account and the evolution of the diffusion coefficient is studied as a function of 
temperature and cluster mass for small clusters. The diffusion of A clusters in an AB 
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alloy was investigated by Binder (1977) using a lattice gas model. In this case, due to 
evaporation and redeposition, the mass of the diffusing clusters may vary in time. 

We introduce here a new model for the cooperative diffusion of an N-particle 
cluster on the square lattice. The particles undergo short-range jumps with the constraint 
that the cluster remains connected. Only the simplest version in which the particles 
interact as hard spheres is considered here. 

The model is described in detail in section 2. The statics is analysed in section 3 
using a phenomenological renormalization method. The definitions of the physical 
quantities of interest are given in section 4. The diffusion of the centre of mass of the 
cluster is studied in section 5 using a transfer matrix approach and a Monte Carlo 
algorithm. In section 6 we examine the diffusion of individual particles of the cluster 
in the centre of mass reference frame. Finally, scaling laws relating the static and 
dynamic exponents are derived in sections 7 and 8. 

2. Description of the model 

We consider an N-particle cluster on the square lattice for which two particles lying 
on first-neighbour sites are connected. In order to simulate a cooperative diffusion 
process, the particles of the cluster are moved to neighbouring empty sites. If we only 
allowed the jumps to first-neighbour sites, some configurations, e.g. a square cluster 
of four particles, could not diffuse. When we allow jumps to second-neighbour empty 
sites, this difficulty disappears and we get a diffusion process which is likely to be 
ergodic as discussed in section 5.1. 

Since we want the N-particle cluster to remain connected, we have to  examine the 
resulting configuration after each elementary jump. In order to avoid the inspection 
of the whole cluster, we forbid jumps breaking locally the cluster as well as those 
generating vacancies, i.e. those forming a closed loop of occupied sites surrounding 
unoccupied sites. Such clusters may be called lattice animals without vacancies and, 
up to seven particles, these clusters are equivalent to the usual lattice animals since 
no vacancy can be formed. 

During the diffusion process, each particle, randomly selected with a frequency 
equal to 1/N, attempts a jump to any one of its eight first- or second-neighbour sites 
(occupied or unoccupied) with equal probability, and the physical time is incremented 
by 1/N. 

For each particle, we define a local square centred on the particle and containing 
its eight first and second neighbours. Two particles in the same local square are 
connected when they are linked together by a set of first-neighbour particles belonging 
to the square. This definition of the connectivity spares computer time, since deciding 
whether a jump is allowed or not only requires the inspection of the local environment 
of the moving particle in its initial and final states. Two rules involving the local squares 
of the selected particle (figure 1) before and after its jump are necessary: 

(i) in the initial local square, the diffusing particle must not form a vacancy and 
must remain connected to all the particles to which it was connected before the jump; 

(ii) in the final local square, the diffusing particle must not connect together particles 
which were not connected before the jump. 
This set of local connectivity rules ensures that the cluster remains connected, without 
vacancies, and the rules are reversible. In conclusion, only the jumps distorting locally 
the cluster surface are allowed. 
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t’ I 

r - -, 

F i n d  square 

-D nlrectlon Jump 

Figure 1. Local environment o f  a particle (black circle) on the square lattice for: ( a )  a 
jump to a first-neighbour empty site; ( b )  a jump to a second-neighbour empty site. 

3. Static properties 

In this section, the phenomenological renormalization approach (Nightingale 1976) is 
used to determine the static properties of lattice animals without vacancies on the 
square lattice. The method consists in calculating the correlation length & on a strip 

Demda and De Seze (1982, hereafter referred to as DDS) for the lattice animal problem. 
Let us consider the same example as  in DDS in order to emphasize the differences 

between the two models. Using periodic boundary conditions on a strip of width n = 4, 
we obtain the six configurations displayed in figure 2. In order to avoid an ambiguous 
definition for a vacancy on the strip, we have to modify slightly the definition of the 
c o ~ ~ c d v i t y  sire:: i:: EES. !n ou: case, :he b!ack sites in fignre 2 are occ~pled and a!! 
connected together through a common root placed at  column 0. For the same reason, 
we also have to eliminate the completely connected configuration ( A )  since, otherwise, 
virtual vacancies due to the periodic boundary conditions might appear as shown in 
figure 3. 

of Fi&h ii, iijiiig a iiaiisfii iiia:iix techiiiqne. We fG!!ow :he p:ocedi;:e p:opos;d by 

As in DDS, we consider the correlation function G L ( x )  defined by 

[ A I  I 6 1  I C 1  10) I E l  IF1 

Figurrl. Thesir configurations anastrip afwidth II =4with periodicbaundaryconditians. 
0, occupied and connected rile; 0, empty sile; x, occupied but no1 connected rile. 
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I A I  I F 1  i A 1  

Figure 3. An example of virtual vacancies For a strip of width n = 4. The last line is 
equivalent to the first one because of the periodic boundary conditions. a, occupied and 
connected rite: 0, empty site. 

where N W ( l ,  L )  is the number of animals of N sites connecting column 1 to column 
L. We may write 

C L ( X ) = B L ( X ) +  C ~ ( x ) + D , ( x ) + E , ( x ) + F , ( x ) = ~ n ; ( x )  (3.2) 

where each term nL(x) represents the part of the sum (3.1) over all animals spreading 
from column 1 to column L ending with the configuration a'. The linear relations 
between the set of polynomials at column L and column L +  1 are 

B,,, = ~ ' ( 4 8 ,  + 4 C ,  + 2 0 ,  + 2EL + 3 FL) 

CL+,  = x 2 ( 4 B L + 3 C L + 4 D L + 2 F L )  

DL+~ = x2(BL + DL) 
EL+,  = x'( BL+ 2 C L +  EL + FL) 

FL+, = x(3  BL+ 2 C L +  2DL+ FL).  

(3.3) 

These equations are very close to those found in DDS. The only difference is the third 
term of BL+, : the factor 2 is the number of ways to connect configuration D at column 
L to configuration B at column L+ 1, the two remaining cases being forbidden because 
a vacancy is created (see figure 4 ) .  

Once the transfer matrix T is constructed, 

n:+,=x TJr l i  (3.4) 

the leading eigenvalue h , ( x )  is obtained by successive multiplications and the correla- 
tion length 6, is calculated as 

(3.5) 6 =-- 
In A , ( x ) '  

L L*1  L L+1 L L*1 L L.1 

I l l  1 2 1  131 t 41 

Figure 4. Different ways to go from configuration D at column L to configuration B at 
column L+ 1.  The cases (1) and (3)  are forbidden because a vacancy is formed. Symbols 
as in figure 3. 
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The critical fugacity x, is determined by solving the fixed-point equation 

(3.6) 

(3.7) 

where the derivatives are calculated at  the fixed point X?'. For the largest strips, the 
critical exponent values U. and the fixed point values x?' converge monotonically and 
can be extrapolated to n = 00 (table I). The sophisticated extrapolation method pro- 
posed by Derrida and Stauffer (1985) which gives Y = 0.64075 f 0.00015 for usual lattice 
animals is not used here, since our largest strips are only nine-site wide. Our method 

to give the best straight line on a log-log plot. For comparison, we tried the same 
method with our U. estimates and those found by Derrida and Stauffer (1985) for the 
same values of n. In figure 5 ,  we observe that both series converge to U = 0.6403 f 0.0005, 

,-..--:o+o :--+c.-A i- -1ntri-n +he A n t n  .IOI.S..C (n -I\-" W P I P  e ;c 51 nslrslmder nA&ic ter l  
s,",,),ILI IIIDLC'ZIU 111 p""LL,.,E, L L L C  " Y L Y  *.,.1"1 \., ', , .....* .., .. Y........-.-. 

Table 1. The fired point xi"' and critical exponent v,, estimates for strip width 3 s  n S 9 .  
The extrapolated  value^ are extracted from figures 3 and 4. 

" - 1  " xi"' U,, 

2 3 0.19895 0.5519 (1) 
3 4 0.241 52 0.6348 (1) 
4 5 0.243 41 0.6351 (1) 

6 7 0.245 84 0.6386(1) 
7 8 0.246 19 0.6392 (1) 
8 9 0.246 39 0.6395 (1) 

extrapolated 0.24672 (31 0.6403 ( 5 )  

" S.245 09 0.6374 (:I 

"" 

0638- 

0 2 i 6 i 

Figure 5. Plot of the critical exponent U,, estimates against ( n  - I).' for Strips of width up 
to n = 9  (crosses). Also plotted are Derrida and Staufier's (1985) results (dots) for lattice 
animals. 
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0.2470 I 

0.2430 
0 2 4 6 8 1 0  

I" -1 I - =  

Figure 6. Plot of the fixed point values xi"' versus ( n  - 

for the same value a = 3 of the adjustable parameter. The critical exponent Y is probably 
the same in both cases, and the vacancies irrelevant. Finally, our estimate for the fixed 
point x,=0.24672*0.00003 (figure 6) is close but slightly higher than the value 
x: = 0.24613 +0.00001 calculated by Derrida and Stauffer (1985). This is in agreement 
with an unpublished theorem by Madras (see also Whittington and Soteros 1990). 

4. Definition of physical quantities 

During the diffusion process, we calculate physical quantities related to the cluster 
shape (radius of gyration), the centre of mass motion (diffusion coefficient) and the 
diffusion of individual particles of the cluster (pair correlation function). 

The radius of gyration gives an estimate of the geometrical extent of the cluster 
and is defined for an N-particle cluster as 

1 
(4.1) ( R g = ? I  ( ( r , - r , ) * )  

1.J  

where r,( 1 )  locates the position of the ith particle, at time 1, in the laboratory reference 
frame. The angular bracket denotes a statistical average over all the cluster configur- 
ations. The initial position of the centre of mass is chosen as the origin, 

(4.2) 
1 

N ,  
R ( 0 )  =-E r,(O) = 0 

so that the displacement of the centre of mass at time I ,  

1 
R ( t ) = - E  r , ( t )  

N i  
(4.3) 
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leads to the mean-square displacement, 

related to the centre of mass diffusion coefficient, 

The correlation function for the relative position of a pair of particles i and j is 
defined as 

5. Diffusion of the centre of mass 

5.1. Dynamical transfer matrix method 

The diffusion of the cluster may be studied by a transfer matrix method. As the number 
of cluster configurations increases rapidly with the mass N, this method is restricted 
to small sizes (up to six particles here) and it is necessary to use Monte Carlo calculations 
for larger clusters. 

give the probability after 
each jump attempt to find the cluster in configuration Ij), if it was previously in 
configuration 1 ; ) .  As an example, the set of configurations explored by a cluster of 
mass N = 3 is given in figure 7. Let us calculate, for instance, the transition probability 
T6, from configuration 11) to configuration 16) (see figure 7). The transition may only 
he realized by moving the left-most particle of state 11) selected with a frequency 
l / N = f ,  along the south-east direction which is selected with a probability of Q. The 
transfer matrix element for this jump is then 

We use a dynamical transfer matrix whose elements 

1 
Tel =(61T/1) =-, 

8N 

A useful property of the transfer matrix is 

X T , ; = l  

which simply states that the total probability to find the system in a given configuration 
l j ) ,  starting from all the possible initial configurations l i )  is equal to one. 

Figure 7. The six possible configurations for a cluster of  mass N = 3  
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An important question which arises now is the ergodicity of the model. Let G,(t)  
be the probability of finding the system in a configuration I f )  at time f = n / N ,  if it 
was in a configuration li) at time f = 0: 

G d t )  = ( f l T " l i ) .  (5.3) 

The matrix T may be expressed in the basis of the transfer matrix eigenvectors {IAJ} 
associated to the eigenvalues A i  : 

T = I  AiIAi)(A\iI A ,  > A , > .  . . > A k  > . . . . (5.4) 

Assuming that the largest eigenvalue A ,  is non-degenerate, we obtain at large times: 

G,i(t)+ A Y ( f I A i M i I Q .  ( 5 . 5 )  

As IA, )  is normalized, l ( i lA l ) l  lies in the range [0,1] and, when ( f l A J ( A l l i )  is non-zero, 
G,<+cc for A ,  > 1 whereas G,+O for A, < 1. Since 

L G,;(t)=l (5.6) 
I 

A ,  is necessarily equal to one, and  from equation (5.2) it is easy to check that 
IA,) - (1  . . . 1 j' is the corresponding eigenvector. The equilibrium distribution is there- 
fore uniform and independent of the initial state of the system, so that the model is 
ergodic when A ,  is non-degenerate. In practice, this has only been verified numerically 
for the smallest clusters N S 6. 

We now examine the time evolution of the mean-square displacement R 2 ( N ,  t )  of 

motion of the centre of mass along the X-axis and, on average, we have R*(N,  1 )  = 
X'( N ,  t )  + Y'( N, f )  = 2 X 2 (  N, 1 ) .  In  order to calculate X 2 ,  all the square centre of mass 
displacements (AX,,)2 from an initial state li) to  a final state I f )  have to  be weighted 
by the probabilities GIj( t )  as follows: 

.L. -.-.-- ^ C  -C.L- ^I ..-.-.. e:--- *L^ A:=..-:-.. :" :-- ._^_ :- -..,.. --..":A-- r L ^  c,,r C r l l l l r  U, ,,lab> U, LllG l l l C  U I U S L C L .  JLllCC ,,IC "IILU>IUII  1J r*unup,lc, w c  urzry CVII>I"GL 

(5.7) 

To compute the elementary AXjj for a transition from 1;) to Ij), we slightly modify the 
initial transfer matrix by multiplying each element 7;; by a factor exp(h AXj i ) .  The 
probability Gn( 1 )  becomes a function of the field h and, using the asymptotic form 
of T" for large times, relation (5.7) becomes 

The diffusion coefficient of the centre of mass is then defined by 

(5 .9 )  

The data for the diffusion coefficient D ( N )  are given in table 2, together with those 
for larger systems obtained by Monte Carlo simulations. 
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Table 2. The diffusion coefficient D obtained by the transfer matrix method for N S 6  and 
by the Monte Carlo algorithm for clusten containing up to N = 86 particles. 

N D (Transfer matrix) D (Monte Carlo) 

2 0.062 50 - 
3 0.027 78 0.0274 * 0.0009 
4 0.017 76 0.01 84 + 0.0004 
5 0.012 83 0.0127 +0.0004 
6 0.01002 0.0100*0.0003 
7 - 8 . 2 9 ~  10-’10.24x IO-’ 

I 1  - 4 . 6 3 ~  lO~’+O.I6x10~’ 
16 - 2 . 9 8 x 1 0 ~ ’ + 0 . 2 1 ~ 1 0 ~ ’  

8 - 6 . 9 1 ~ 1 0 - ~ ~ 0 . 2 2 x 1 0 - ’  

20 - 2 . 2 7 ~ 1 0 - 3 + o . 0 4 ~ 1 0 - 3  
26 - 1 . 6 4 ~  1 0 - ~ + 0 . 0 5 ~  10.’ 

58 - 6 . 8 7 ~ 1 0 - ~ + 0 . 2 5 ~ 1 0 - ~  
86 - 4 . 5 1 ~ 1 0 - ~ + 0 . 2 0 ~ 1 0 - ~  

38 - 1 . 0 9 ~  10~’+0.04x IO-’ 
47 - 8 . 4 9 ~ 1 0 ~ ~ + 0 . 2 7 x l O ~ ~  

la1 f.50 Ibl t - 250  

i c  I t-3750 id)  t = 1 5 0 0 0  

l e )  t - 7 5 0  i f )  t.3750 

Igl t.9000 l h l  t.lS000 

Figure 8. Evolution towards equilibrium of a cluster containing 86 particles. Four typical 
steps have been represented, when starting from a square configuration ( ( a )  to ( d ) )  and 
a linear configuration ( ( e )  to (f)). 
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5.2. Monte Carlo algorithm 

We briefly describe the Monte Carlo algorithm used to study the properties of larger 
clusters containing up to N = 86 particles. At each Monte Carlo step: 

( i )  a particle is randomly selected and the physical time is incremented by 1/N; 
(i i)  a site among the eight first and second neighbours of the particle is chosen at 

random; 
(iii) the jump is allowed if this site is empty and if the two local rules defined in 

section 2 are respected. 
In the first part of a simulation the system evolves towards equilibrium (figure 8) 

which is assumed to be reached when two different initial configurations (square and 
linear) lead to the same radius of gyration. The physical quantities of interest are then 
computed and averaged over a large number of independent runs. 

10 

0 -  

- 

1 2 ,  
N=16 

+ 20 

10 

Figure 9. The time evolution of the mean-square displacement of the centre of mass, for 
clusters containing N panicles (16 s N s 58). The diffusion coefficient decreases when the 
mass increases. 

l o g  IN1 

Figure 10. Plot of log(D) against log( N).  A linear fit for the large N giver the estimate 
U = -l.12+0.03. 
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5.3. Mean-square centre of mass displacement 

The mean-square displacement R 2 ( N ,  t )  of the cluster centre of mass is computed as 
a function of time 1 and mass N. We observe a Gaussian diffusion law R 2 -  Df ,  for 
all the cluster sizes (figure 9), and the diffusion coefficient D given by the slope of the 
curves decreases when N increases. The data (see table 2) are consistent with a power 
law 

D - N u .  (5.10) 

Also given in table 2 are the D-values obtained by the transfer matrix method for 
N s 6  (see section 5.1)  providing a check of the Monte Carlo data for small sizes. In 
figure 10, we plot log(D) versus log(N) for the largest clusters. The curve follows a 
straight line whose slope gives the estimate U = -1.12*0.03, a value slightly lower than 
U = -1 obtained for the polymer chains (Verdier and Stockmayer 1962). 

6. Pair correlations inside the cluster 

The diffusion of the individual particles of the cluster which is at the origin of the 
collective motion is also investigated. For this purpose, we compute the pair correlation 
function g2( N ,  t) which is simply related to the mean square particle displacement in 
the centre of mass reference frame: 

1 
r2( N, t )  =-x ((I,( 1 ) -  R ( f ) -  rj(0))2). (6.1) 

In order to prove this assertion, we develop the numerator in (4.6) and use (4.2) to get 

N i  

so that, using (4.2) once more, 

Using the same approach for R i  in the initial equilibrium state and at time 1, we obtain 

(6.4) 
2 2 
N i  N i  

developed and, altogether, we have 

R ;  =-x (rT(0)) =-E (( rj( 1 )  - R ( l ) ) 2 ) .  

Tlr- #--* I --..-A:--- -:..- *he >:aa---* +e+-o "-..--A-- ... ha- tho I< I \  :" 
111G l * D L  L W "  Gqu' lL1"1L3 6 1 ° C  L1.G U l l l C l C l l l  LCI.IIa Lpp'ca'LL16 W l l C l l  LI ,G J ' I Y 4 L C  111 \".', ,a 

r 2 ( N , t ) = R i ( 1 - g , ( N ,  I ) ) .  (6.5) 

As shown in the appendix, the pair correlation function depends on many characteristic 
times rk : 

(6.6) 

with ,Yk Ah = 1 and T ~ >  7, > T.,. . . , At large times, only the largest characteristic time 
T~ remains and g2( N, t )  is given by 

(6.7) 

g2( N, t )  = E  A, e-'/'& 
k 

gz( N, f )  = A2 eC''7z. 
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To determine the amplitudes A, and the characteristic times T~ appearing in g,, we 
use the following recursive method: 

(i)  A, and r2 are obtained by a linear fit of In(g,( N, I ) )  against In( f ) ,  for large times. 
(i i)  The difference g2( N, t) - A, exp( - 11 T,) is then calculated and the same method 

For a cluster of mass N = 47, only the three first terms of g2( N, t) can be calculated 
as above is repeated to get A, and r,, and so on. 

using our Monte Carlo data, and we get 

A2 = 0.79 A3=0.15 A, = 0.06 

r2=938 r3 = 291 7,= 58. 

The main difficulty of this method is the loss of accuracy at each iteration which 
prevents reliable estimates to be made for high-order terms. For this reason, we only 
use the largest characteristic time r2 which, as can be seen in table 3; increases with 
the mass N. Plotting log(r2) versus log(N) (figure 11) for the largest clusters ( 1 6 s  N 6 
86), we obtain a straight line, so that 

7,- N P  

with p = 1.8.tO.l. According to equation (6.5), r2 is the time needed for a particle to 
L ^  > L~~ n . .L. ..-.-- ^ P  P ~ ~ I ~ ~ ~ ~  
DC L I W V ~ U  oy fig iii ~rie cenuc VL mass reiCrenLt! IIdme. 

Table 3. rr vducs obtained by the Monte Carlo algorithm for dusters containing up to 
N = 86 particles 

26 331 
38 630 
47 934 
58 1377 
86 2520 

lag IN1 

Figure 11. Plot of log(r,) against l o g ( N ) .  A linear fit gives - y J d , =  1.8*0.1 
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7. Scaling for the mean-square centre of mass displacement 

Assuming that R 2 ( N ,  t )  is a homogeneous function of N and f, 

R'( N, t )  = b2R2(b-dlN,  bYrt) (7.1) 
with b = t-"", one gets 

where T - N-',/"l is a characteristic time for the diffusion of the centre of mass. At 
large times, the scaling function f (x) decreases as a power law, 

f ( X I  - x u  with x = t / T  (7.3) 

~ 2 (  N ,  f )  = ~ - 2 / ~ t + ~ ~ " ~ r / d , ,  (7.4) 

R2(N,  f ) - D t - N " t  (7.5) 

and relation (7.2) becomes 

Since the centre of mass diffusion is Gaussian 

and the last two relations lead to the scaling laws 

y, = udf-2 (7.6) 

Withthepreviousestimatesof df=1/v=1.5618*0.0012and u=-l.12+0.03,onegets 

y,= -3.75*0.05 and w = 0.47 i: 0.04. (7.8) 
The scaling assumption (equation 7.2) and the asymptotic behaviour of f ( x )  are 
numerically tested by plotting l o g ( R 2 / t - 2 / y , )  versus log(f /N-Y"d*),  for different N- 
values in the range N = 8-86 (figure 12). All the data are satisfactorily gathered along 
a straight line and a simple linear fit gives the slope w = 0.47 * 0.09 in excellent agreement 
with the above value (equation 7.8). 

Figure 12. Plot of log(R'/r-"',) against Iog(l/N-',''~) far cluster masses in the range 
N =8-86. A straight line is obtained with a slope w =0.47+0.09. 
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Using relations (7.2) and (7.6), one gets 

D - ~ R :  (7.9) 7 -  N - Y , / d q  I N-("dr -2J /"r -  N - u ~ 2 / d , -  

so that T is the time necessary for a root-mean-square displacement of the centre of 
mass by R,. 

:: 0 - -  - .L, - - - - - - - - - - ~~ - - - 
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Appendix. Properties of the pair correlation function 

In order to compute g2( N, f ) .  one may use another transfer matrix T' which is much 
larger than the matrix T used to calculate R 2 ( N ,  I )  in section 5.1. Since we have now 
to distinguish the particles, the number of configurations increases very rapidly with 
the cluster mass N and this method cannot be used in practice. However, it is a useful 
tool for a better understanding of the correlations inside the cluster. A relation similar 
to 5.2 may be written for the probability conservation and the leading eigenvalue of 
T is also A ;  = 1, with the eigenvector 

lA\)-( l , l  ... l)'-xla) ( A I )  

where 10) is a state associated to a cluster configuration with distinguishable particles. 
in the basis of the cluster 

configurations 10) whose eigenvalues rg = r, - rj are simply the vectors joining the 
positions of the particle pairs ( i ,  j ) :  

I1 

We introduce here a diagonal vectorial operator 

?#I)= r$). (A2) 

Starting from the equilibrium state / A ; ) ,  the pair correlation function at time f is 
obtained by summing over the whole set of configurations, 

or, with (Al) ,  

which, using the complete set of eigenvectors { I A ; ) }  of the T matrix, becomes 

where A',  > A ;  > . . . > A ; > . . . . . The leading eigenvalue A', does not appear in the g, 
expression since the element ( A ; l F v 1 A ' , )  corresponding to the average ( r q )  over all the 
vector orientations vanishes. 

In summary, the pair correlation function depends on many characteristic times 
r X = - l / l n A ;  such as 

(A61 g2( N, f )  = 1 Ah e-'"* 
k 

w i t h X x A k = l ,  T ~ + , < T ~  and T2=max{n) 
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