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Cooperative diffusion of animals on the square lattice

Jean-Christophe Toussaint, Jean-Marc Debierre and Loic Turban
Laboratoire de Physique du Solidet, Université de Nancy 1, BP 239, 54506 Vandoeuvre-lgs-
Nancy, France

Received 21 May 1990, in final form 22 October 1990

Abstract. The collective diffusion of N-particle lattice animals without vacancies and mass
up to N =86 is investigated on the square lattice. Using the transfer matrix technique, a
cluster fractat dimension d;=1.5618+0.0012 is found. The mean-square displacement of
the centre of mass R? and the pair correlation function g, are determined by Monte Carlo
simulations. This dynamical study gives the mass dependence of the diffusion coefficient
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times 7. Scaling assumptions for R? and g, lead to the distinguishment of two characteristic
times: 7 which is the time necessary for the cluster to be translated by its radius of gyration
R,, and 75, the time necessary for a particle of the cluster to be moved approximately by
R, inside the cluster.

1. Introduction

Cooperative diffusion of polymer chains has been intensively investigated (Verdier
and Stockmayer 1962) using lattice models and Monte Carlo algorithms with local
deformations of the chain (for a recent review see Caracciolo and Sokal 1986). More
recently, Kantor et al (1987) have examined the statics and the dynamics of tethered
surfaces defined as two-dimensional manifolds (or ‘sheet’ polymers) embedded in a
three-dimensional space. But very little has been done concerning the diffusion of
lattice animals. Gould and Holl (1981) have studied a diffusion mechanism for an
s-particle cluster, on a lattice whose sites are occupied (empty) with a probability p
(g =1-p). The diffusion mechanism consists in interchanging an arbitrary cluster
particle and a near or distant empty surface site, with probability g, where At is the
variation in the number of perimeter sites {Stauffer 1978). They have computed the
diffusion coefficient of an isolated cluster in the three following limiting cases: p >0,
lattice animals; p = p., percolation clusters; and p— 1, compact clusters. A different
approach where particle jumps are restricted to neighbouring positions was developed
by van der Eerden et al (1977} to describe the diffusion of very small (less than 20
atoms) gold or silver clusters on plane alkali halide substrates. The pair interactions
between two cluster atoms and between one atom and the substrate are taken into
account and the evolution of the diffusion coefficient is studied as a function of
temperature and cluster mass for small clusters. The diffusion of A clusters in an AB
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alloy was investigated by Binder (1977) using a lattice gas model. In this case, due to
evaporation and redeposition, the mass of the diffusing clusters may vary in time.

We introduce here a new model for the cooperative diffusion of an N-particle
cluster on the square lattice. The particles undergo short-range jumps with the constraint
that the cluster remains connected. Only the simplest version in which the particles
interact as hard spheres is considered here.

The model is described in detail in section 2. The statics is analysed in section 3
using a phenomenological renormalization method. The definitions of the physical
quantities of interest are given in section 4. The diffusion of the centre of mass of the
cluster is studied in section 5 using a transfer matrix approach and a Monte Carlo
algorithm. In section 6 we examine the diffusion of individual particles of the cluster
in the centre of mass reference frame. Finally, scaling laws relating the static and
dynamic exponents are derived in sections 7 and 8.

2. Description of the model

We consider an N-particle cluster on the square lattice for which two particles lying
on first-neighbour sites are connected. In order to simulate a cooperative diffusion
process, the particles of the cluster are moved to neighbouring empty sites. If we only
allowed the jumps to first-neighbour sites, some configurations, e.g. a square cluster
of four particles, could not diffuse. When we allow jumps to second-neighbour empty
sites, this difficulty disappears and we get a diffusion process which is likely to be
ergodic as discussed in section 5.1,

Since we want the N-particle cluster to remain connected, we have to examine the
resuiting configuration after each elementary jump. In order to avoid the inspection
of the whole cluster, we forbid jumps breaking locally the cluster as well as those
generating vacancies, i.e. those forming a closed loop of occupied sites surrounding
unoccupied sites. Such clusters may be called lattice animals without vacancies and,
up to seven particles, these clusters are equivalent to the usual lattice animals since
no vacancy can be formed.

During the diffusion process, each particle, randomly selected with a frequency
equal to 1/ N, attempts a jump to any one of its eight first- or second-neighbour sites
{occupied or unoccupied) with equal probability, and the physical time is incremented
by 1/ N.

For each particle, we define a local square centred on the particle and containing
its eight first and second neighbours. Two particles in the same local square are
connected when they are linked together by a set of first-neighbour particles belonging
to the square. This definition of the connectivity spares computer time, since deciding
whether a jump is allowed or not only reguires the inspection of the local environment
of the moving particle in its initial and final states. Two rules involving the local squares
of the selected particle {figure 1) before and after its jump are necessary:

(i} in the initial local square, the diffusing particle must not form a vacancy and
must remain connected to all the particles to which it was connected before the jump;

(i) inthe final local square, the diffusing particle must not connect together particles
which were not connected before the jump.

This set of local connectivity rules ensures that the cluster remains connected, without
vacancies, and the rules are reversible. In conclusion, only the jumps distorting locally
the cluster sutface are allowed.
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Figure 1. Local environment of a particle (black circle} on the square lattice for: {(a) a
jump to a first-neighbour empty site; (b) a jump to a second-neighbour empty site.

3. Static properties

In this section, the phenomenological renormalization approach (Nightingale 1976} is
used to determine the static properties of lattice animals without vacancies on the
square lattice. The method consists in calculating the correlation length £, on a strip
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Derrida and De Seze {1982, hereafter referred to as pos) for the lattice animal problem.

Let us consider the same example as in DDs in order to emphasize the differences
between the two models. Using periodic boundary conditions on a strip of width n=4
we obtain the six configurations displayed in figure 2. In order to avoid an ambiguous
definition for a vacancy on the strip, we have to modify slightly the definition of the

') st
cennectivity given in DDs. In our case, the black sites in figure 2 are occupied and all

connected together through a common root placed at column 0. For the same reason,
we also have to eliminate the completely connected configuration (A) since, otherwise,
virtual vacancies due to the periodic boundary conditions might appear as shown in
figure 3.

As in DDs, we consider the correlation function G, (x) defined by

Gu(x)=Tx"Nu(1, L) (3.1
N

$820°
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Figure 2. The six configurations on a strip of width n = 4 with periodic boundary conditions.
®, occupied and connected site; O, empty site; X, occupied but not connected site.
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Figure 3. An example of virtual vacancies for a strip of width n=4. The last line is
equivalent to the first one because of the periodic boundary conditions. @, occupied and
connected site; O, empty site.

where & (1, L) is the number of animals of N sites connecting column 1 to column
L. We may write

Gr(x)= B (x)+ Co(x)+ De(x)+ Er(x}+ F (x) =% 0 (x) (3.2)
where each term )} (x) represents the part of the sum (3.1) over all animals spreading

from column 1 to column L ending with the configuration Q' The linear relations
between the set of polynomials at column L and column L+1 are

B, =x(4B,+4C, +2D +2E, +3F;)

Criy=x(4B, +3C, +4D,+2F;)

Dy =x(B.+D,) (3.3)
EL+1=x2(BL+2CL+EL+FL) ’
Fiy=x(3B.+2C,+2D,_+F,).

These equations are very close to those found in pps. The only difference is the third
term of B, ,,: the factor 2 is the number of ways to connect configuration D at column
L to configuration B at column L+ 1, the two remaining cases being forbidden because
a vacancy is created (see figure 4).

Once the transfer matrix T is constructed,

;.+l = Z Tajﬂjl. (3.4)
g
the leading eigenvalue A, (x} is obtained by successive multiplications and the correla-
tion length £, is calculated as
1

£ = —m. (3.5)
L L+ A L L+ [
)
g
.#
¥ 123 13) {4)

Figure 4. Different ways to go from configuration D at column L to configuration B at
column L+ 1. The cases (1) and (3) are forbidden because a vacancy is formed. Symbols
as in figure 3.
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The critical fugacity x. is determined by solving the fixed-point equation

LX) 6 ()

.6
n n—1 (3.6)
The critical exponent v, defined by &, ~|x{"' ~x|™* is finally given by
1 1
L n[{d¢./dx)/(d€,-,/dx)] (3.7)
v, In{n/n-1)

where the derivatives are calculated at the fixed point x."’. For the largest strips, the
critical exponent values v, and the fixed point values x\"’ converge monotonically and
can be extrapolated to n = oo (table 1). The sophisticated extrapolation method pro-
posed by Derrida and Stauffer (1985) which gives v = 0.64075 £ 0.00015 for usual lattice
animals is not used here, since our largest strips are only nine-site wide. Qur method

o + tand Tntt —
consists instead in plotting the data versus (n—1)"" were o is a parameter adjusted

to give the best straight line on a log-log plot. For comparison, we tried the same
method with our », estimates and those found by Derrida and Stauffer (1985) for the
same values of n. In figure 5, we observe that both series converge to v = 0.6403 £ 0.0003,

Table 1. The fixed point %"’ and critical exponent v, estimates for strip width 3<n=9.
The extrapolated values are extracted from figures 3 and 4.

n—1 n xim v,

2 3 0.198 95 0.5519 (1)
3 4 0.241 52 0.6348 (1)
4 5 0.243 41 0.6351 (1)
5 & 0.24509 06374(1)
6 7 0.245 84 0.6386 (1)
7 8 0.246 19 0.6392 (1)
8 9 0.246 39 0.6395 (1)
extrapolated 0.246 72(3) 0.6403 (5}

V= 0 6403(5)
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Figure 5. Plot of the critical exponent », estimates against (n — 1) for strips of width up
to n=9 (crosses). Also plotted are Derrida and Stauffer’s {1985) results (dots) for lattice
animals.
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Figure 6. Plot of the fixed point values x{™ versus {n—1)">2

for the same value a = 3 of the adjustable parameter. The critical exponent ¥ is probably
the same in both cases, and the vacancies irrelevant. Finally, our estimate for the fixed
point x.=0.24672+0.00003 (figure 6} is close but slightly higher than the value
x2=10.24613 £ 0.00001 calculated by Derrida and Stauffer (1985). This is in agreement
with an unpublished theorem by Madras (see also Whittington and Soteros 1990).

4. Definition of physical quantities

During the diffusion process, we calculate physical quantities related to the cluster
shape (radius of gyration), the centre of mass motion (diffusion coefficient) and the
diffusion of individual particles of the cluster (pair correlation function).

The radius of gyration gives an estimate of the geometrical extent of the cluster
and is defined for an N-particle cluster as

1
(R§)=FZ((%—'3)2) (4.1)
i
where r;(t) locates the position of the ith particle, at time 4, in the laboratory reference
frame. The angular bracket denotes a statistical average over all the cluster configur-
ations. The initial position of the centre of mass is chosen as the origin,
1
R(0)=EZ r(0)=0 {4.2)

so that the displacement of the centre of mass at time ¢

R() =5 1) (43)
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leads to the mean-square displacement,
1
R¥(1) =5 X (r() - 1,(1) (4
i

related to the centre of mass diffusion coefficient,

(4.5)

The correlation function for the relative position of a pair of particles i and j is
defined as

2w (1) R ((r(0) — £(0)))

5 {(r(0) — 1 (0))% (4.6)

2:(N, t)=

5. Diffusion of the centre of mass

5.1. Dynamical transfer matrix method

The diffusion of the cluster may be studied by a transfer matrix method. As the number
of cluster configurations increases rapidly with the mass N, this method is restricted
to small sizes (up to six particles here) and it is necessary to use Monte Carlo calculations
for larger clusters.

We use a dynamical transfer matrix whose elements T; give the probability after
each jump attempt to find the cluster in configuration [j), if it was previously in
configuration |i). As an example, the set of configurations explored by a cluster of
mass N =3 is given in figure 7. Let us calculate, for instance, the transition probability
T, from configuration |1} to configuration |6) (see figure 7). The transition may only
be realized by moving the left-most particle of state |1) selected with a frequency
1/ N =1, along the south-east direction which is selected with a probability of . The
transfer matrix element for this jump is then

1
T61=<6|T|1)=W. (5.1)

A useful property of the transfer matrix is

Y Ti=1 (5.2)

which simply states that the total probability to find the system in a given configuration
|/, starting from all the possible initial configurations |/} is equal to one.

gl Eldualls HE

{1 |2 |3 {8y |53 |e>

Figure 7. The six possible configurations for a cluster of mass N =3.
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An important question which arises now is the ergodicity of the model. Let G:{t)
be the probability of finding the system in a configuration |f} at time r=n/N, if it
was in a configuration |i) at time ¢ =0

Gp(t) =(f|T"[d). (5.3)

The matrix T may be expressed in the basis of the transfer matrix eigenvectors {|A,)}
associated to the eigenvalues A;:

T=ZI\J|A,)<)\|| )\|>A2>...>Ak>.... (5.4)

Assuming that the largest eigenvalue A, is non-degenerate, we obtain at large times:
G(1) > AT(FIA KA ). (5.5}

As |A,) is normalized, |(i|A )| lies in the range [0, 1] and, when {f|A,}{A,|i} is non-zero,
Gy = o0 for A;>1 whereas G, -0 for A, < 1. Since

; Gnlt) =1 (5.6)

A, is necessarily equal to one, and from equation (5.2) it is easy to check that
|Ad~(1...1)"is the corresponding eigenvector. The equilibrium distribution is there-
fore uniform and independent of the initial state of the system, so that the model is
ergodic when A, is non-degenerate. In practice, this has only been verified numerically
for the smallest clusters N =6.

We now examine the time evolution of the mean-square displacement R*(N, t) of
the cenire of mass of the cluster. Since the diffusion is isotropic, we only consider the
motion of the centre of mass along the X-axis and, on average, we have R*(N, )=
XN, 1)+ YA(N, 1}=2X*(N, t). In order to calculate X, all the square centre of mass
displacements (AX;)}* from an initial state |i) to a final state |f) have to be weighted
by the probabilities G(¢) as follows:

X \r—— ) =3 (8X,)°Gy(). (57)

To compute the elementary AX;; for a transition from [i) to | /), we slightly modify the
initial transfer matrix by multiplying each element T; by a factor exp(h AX);). The
probability Gy (r) becomes a function of the field # and, using the asymptotic form
of T" for large times, relation (5.7) becomes

Xz(t=%)—hm{ ;2111(2 G‘”’(h))}h=o—~N{Al ‘Z”l‘ } R

The diffusion coefficient of the centre of mass is then defined by

(r=n/'N)_N{i aza,} (59)
h=0

The data for the diffusion coefficient D(N} are given in table 2, together with those
for larger systems obtained by Monte Carlo simulations.



Cooperative diffusion of animals on the square lattice 485

Table 2. The diffusion coefficient D obtained by the transfer matrix method for N <6 and
by the Monte Carlo algorithm for clusters containing up to N =86 particles.

N D (Transfer matrix) D (Monte Carlo)
2 0.062 50 —
3 0.027 78 0.0274+0.0009
4 0.017 76 0.0184£0.0004
5 0.012 83 0.0127 £0.0004
6 0.01002 0.0100=0.0003
7 — 820x 1077 £0.24% 107
8 — 691x1073+£0.22% 107}
11 — 4.63x1073£0.16 %1073
16 — 298%107+0.21 x 1072
20 — 227%107£0.04 x 1072
26 — 1.64% 107 £0,05x 1077
38 — 1.09x 1073 £0.04x 1073
47 — 849 x 1072 +£0.27x 107
58 — 6.87x 1074 £0.25x 107
86 — 4.51%x1074£0.20% 10~
la) F=50 (b) +=250
tel #=3750 tdy F=15000
il T b © ,:,J"'I'f"h_"'q
le) +=750 {f) #=3750

i

(g} +=9000 th) £=15000

Figure 8. Evolution towards equilibrium of a cluster containing 86 particles. Four typical
steps have been represented, when starting from a square configuration ({a) to (d)) and
a linear configuration {{e) to (f}).
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5.2. Monte Carlo algorithm

We briefly describe the Monte Carlo algorithm used to study the properties of larger
clusters containing up to N =86 particles. At each Monte Carlo step:

(i) a particle is randomly selected and the physical time is incremented by 1/ N;

(ii) a site among the eight first and second neighbours of the particle is chosen at
random;

(iii) the jump is allowed if this site is empty and if the two local rules defined in
section 2 are respected.

In the first part of a simulation the system evolves towards equilibrium (figure 8)
which is assumed to be reached when two different initial configurations {square and
linear) lead to the same radius of gyration. The physical guantities of interest are then
computed and averaged over a large number of independent runs.

12
N=16
1 .
* 0
*
+
& .t .
* +
+ +
26
2 + -
R & Lt .t .
. *+ * . * *
| ot + + 38
b +t’+t’, LT * .t
+* +
4* **“‘v .+ * . N .
2 ¢‘:::’o:‘+ .t . P . . + 58
.+t
M'l Yo a0 TR R WO I
0 200 400 600 800 1000

Figure 9. The time evolution of the mean-square displacement of the centre of mass, for
clusters containing N particles (16 = N = 58). The diffusion coefficient decreases when the
mass increases.

log (O]

log (M)

Figure 10. Plot of log( D) against log(N}. A linear fit for the large N pives the estimate
u=-112+003.
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5.3. Mean-square centre of mass displacement

The mean-square displacement R’(N, t) of the cluster centre of mass is computed as
a function of time t and mass N. We observe a Gaussian diffusion law R~ D, for
all the cluster sizes (figure 9), and the diffusion coefficient D} given by the slope of the
curves decreases when N increases. The data {see table 2) are consistent with a power
law

D~N* (5.10)

Also given in table 2 are the D-values obtained by the transfer matrix method for
N =6 (see section 5.1) providing a check of the Monte Carlo data for small sizes. In
figure 10, we plot log( D)} versus log(N) for the largest clusters. The curve follows a
straight line whose slope gives the estimate u = —1.12+£0.03, a value slightly lower than
u = -1 obtained for the polymer chains (Verdier and Stockmayer 1962).

6. Pair correlations inside the cluster

The diffusion of the individual particles of the cluster which is at the origin of the
collective motion is also investigated. For this purpose, we compute the pair correlation
function g,(N, t) which is simply related to the mean square particle displacement in
the centre of mass reference frame:

1
rZ(N,r)=—N—Z((rs(t)—R(r)—-n(O))z)- (6.1}
i
In order to prove this assertion, we develop the numerator in (4.6) and use {4.2) to get
2
N t)= r,(t) r(0 6.2
&N, 0 =g L (1) r(0) (62)
so that, using (4.2) once more,
2
N, t)y=—— A{(0)-(r(tY—R(1)D). 6.3
8N, 1) =g L (r(0)- (r() = R(O) (6.3)
Using the same approach for R} in the initial equilibrium state and at time t, we obtain
2 2 ,
R§=Kg{r?(O)}=F§((r;(t)—R(')) > (6.4)
The last two eguations give the different terms appearing when the square in (6.1} is
developed and, altogether, we have

r’(N, )= Ry(1-g:(N, 1)). (6.5)

As shown in the appendix, the pair correlation function depends on many characteristic
times 7 :

&(N, 1) '—'% Age™n (6.6)

with £, A, =1 and 7> 7> 74.... At large times, only the largest characteristic time
T, remains and g.(N, t) is given by

AN, 1)=Aye " (6.7)
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To determine the amplitudes A, and the characteristic times 7, appearing in g., we
use the following recursive method:

(i) A,and 7, are obtained by a linear fit of In(g.( N, 1)) against In(¢), for large times.

(ii) The difference g,( N, t) — A, exp(—~t/ ) is then calculated and the same method
as above is repeated to get A; and 7., and so on.

For a cluster of mass N =47 only the three first terms of g,( N, 1) can be calculated
using our Monte Carlo data, and we get

,=0.79 A,=0.15 Ay=0.06
(6.8)

7,=938 T4 =291 7,= 58,

The main difficulty of this method is the loss of accuracy at each iteration which
prevents reliable estimates to be made for high-order terms. For this reason, we only
use the largest characteristic time 1, which, as can be seen in table 3, increases with
the mass N, Plotting log(r;) versus log(N) (figure 11) for the largest clusters (16 < N =<
86}, we obtain a straight line, so that

Ty ™ Np
with p=1.8+0.1. According to equation (6.5}, 7, is the time needed for a particle to
be moved by R, in the cenire of mass reference frame.

Table 3. 7, values obtained by the Monte Carlo algorithm for clusters containing up to

N =86 particies.
N T
26 N
38 630
47 934
58 1377
86 2520
J4p +
32
E L
3.0F
g
2.8
2.6E )
+ 1 . L 1 1 N 1

1.9 1.6 1.7 1.8 1.9 2.0
log (&)

_
.

Figure 11, Plot of log(r;) against log({ N). A linear fit gives —y)/d,= 1.8 0.1,
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7. Scaling for the mean-square centre of mass displacement

Assuming that R*(N, t) is a homogeneous function of N and ¢,
R*(N, t)=b*R*(b™"N, b*t) (7.1)

with b=t""" one gets

RN N = ¢—2fy_,r{l\ TN
4 =i J \T} iz

where 7~ N7%/% is a characteristic time for the diffusion of the centre of mass. At
large times, the scaling function f(x) decreases as a power law,

f(x)~x* with x=1t/7 (7.3}
and relation (7.2) becomes

R2(N, 1) =¥y Nos/d (7.4)
Since the centre of mass diffusion is Gaussian

R*(N, t)~ Dt~ N"t (7.5)
and the last two relations lead to the scaling laws

ye=ud;.—2 (7.6)

w= %I (7.1
With the previous estimates of d;=1/r=1.5618 £0.0012 and u = —1.12=0.03, one gets

¥, =-375£0.05 and w = .47 +£0.04, (7.8)

The scaling assumption {equation 7.2) and the asymptotic behaviour of f{x) are
numerically tested by plotting log(R?/t ¥ versus log(t/ N™"'), for different N-
values in the range N = 8-86 (figure 12). All the data are satisfactorily gathered along
astraight line and a simple linear fit gives the slope w = 0.47 £ 0.09 in excellent agreement
with the above value {equation 7.8).

0

“osk
£ -o0.8p
, 1
n‘t b=
= a2f
g

-1.6fF

-2.0f //

[ 1 M 1 1 L P 1 o, 1 L 1 L P
-3 ) -1 0 1
log (F/N %)

Figure 12. Plot of log(R%/1~%"1) against log(t/ N™5/*} for cluster masses in the range
N =8.-86. A straight line is obtained with a slope @ = 0.47+0.09.
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Using relations (7.2) and (7.6}, one gets
T~ N7 N DI NN DR (7.9)

so that 7 is the time necessary for a root-mean-square displacement of the centre of
mass by R

8. Scaling for the pair correlations inside the cluster

We assume that the pair correlation function g,(N, 1) is a homogeneous function of
N and ¢ so that

g20b™UN, b71t) = b°g,(N, ¢) (8.1)

where a new exponent )| associated to the particle diffusion, different from y,, has
been introduced. For a scaling factor b~ N'/%_ we obtain

g:N, l)=h(t/N_'V:/d')=h(—r) = h{x} (8.2)
72
where 7,~ N %% and x = t/ 7,. Since 7, ~ N (equation (5.9)), p = —y!/ d, and, finally,
yir=—28+92. (8.3)
In order to check the ccaling ncr.‘nmnhnn for o f N Y at 1 1

order to ch caling assum on for g;(N, ¢) at larg
function h(x) versus x (figure 13). Smce g:{ N, t) depends on several characteristic
times, the scaling observed at small times (x < 1) is somewhat fortuitous.

As the centre of mass diffusion is due to the cooperative motion of the cluster
particles, the two characteristic times 7~ N */% and r,~ N /% must be related in
some way. We propose the following empirical relation:

yi=y+1 (8.4)

which is well verified by our numerical results (y;=-2.8+0.2 and v, =—3.75+0.05)
as well as for other cooperative diffusion models in one, two and three dimensions
which are currently being studied and for which resuits will be published later.

1.0

0.8]

0.6}

hix)

F:J
s

0.2r

Figure 13. Plot of h(x)} against x as a check of the scaling assumption for g.( N, 1) at large
times. All the curves gather together along a unique one.
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Appendix. Properties of the pair correlation function

In order to compute g.( N, t), one may use another transfer matrix T' which is much
larger than the matrix T used to calculate R*(N, t) in section 5.1. Since we have now
to distinguish the particles, the number of configurations increases very rapidly with
the cluster mass N and this method cannot be used in practice. However, it is a useful
tool for a better understanding of the correlations inside the cluster. A relation similar
to 5.2 may be written for the probability conservation and the leading eigenvalue of
T’ is also A} =1, with the eigenvector

iA;)ﬁ-(l,l...l)"-v%lQ) (Al)

where |(1) is a state associated to a cluster configuration with distinguishable particles.

We introduce here a diagonal vectorial operator #; in the basis of the cluster
configurations |(}) whose eigenvalues r;=# —r, are simply the vectors joining the
positions of the particle pairs (i, j):

£ Q) = r,| 2. (A2)

Starting from the equilibrium state |A{}, the pair correlation function at time t is
obtained by summing over the whole set of configurations,

( n) Sa S0 QIR TR A D
g2 =

TN T s QIR

(A3)

or, with (A1),

T (Al Ai_-fmAl__ Al
gz(t=i) _ i 1|'f - ’JJ 1) (A4)
N by (Ali"ijif\l)

which, using the complete set of eigenvectors {|A}}} of the T matrix, becomes

o 1-2) B O AT
N Zir Zog AR ADIE

where A1>AL>. . . > A > ... The leading eigenvalue A} does not appear in the g,
expression since the element {A}|F;|A}) corresponding to the average (r;} over all the
vector orientations vanishes.

In summary, the pair correlation function depends on many characteristic times
7. =—1/ln A} such as

8N, !)={:Ak e (A6)

(A5)

with Zk Ak =1, Ter1 < Tx and 1‘2=max{'rk}.
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